

Building the future one block at a time.

Living City Block

"Funding, Planning, and Policy Development for Aggregated Energy Programs" September 28, 2012

WHAT KIND OF CITIES WILL THEY LIVE IN?

WHAT KIND OF CITIES WILL THEY LIVE IN?

VISION AND MISSION

Regenerative and resilient cities that are culturally thriving, energy and resource hyperefficient, and economically sustainable.

To create and implement a replicable, exportable, scalable, and economically viable framework for the resource-efficient regeneration of existing cities.

WHAT WE DO

OPPORTUNITY

By addressing the challenges as a system, we

HOW WE ARE GOING TO DO IT

An Integrated Approach with Multiple Benefits.

- Prove the business/ finance case
- Prove the economic development case
- Prove the livable communities case

COMMUNITY BUILDING & BEHAVIOR CHANGE

We Make a 6-10 Year Commitment to Each Community

NEW CONSTRUCTION and LARGE BUILDINGS

This level of work is being achieved in ground-up construction and large buildings.

Our challenge is to achieve the same thing, or better, in existing small to medium-sized buildings.

95% of U.S. commercial building owners own small to midsized commercial buildings

⇒ **45**% of all commercial sq footage ⇒ Consuming **44**% of annual commercial building energy use

www.LivingCityBlock.org

Living City Block approaches the incredibly complex challenge of transforming cities by breaking it down into "bite-sized," (we like to say "block-sized") components.

We identify target blocks, which we call *Living* City Blocks, areas that can have a disproportionate impact on their local surroundings.

THE PROCESS

Phase 1 Neighborhood
Selection

Scouting locations, securing local partners, identification of local funding

Phase 2 –
Secure
Partnerships

Lock in location as well as utility and academic partners, community workshop, and draft master plans

Phase 3 – Project Kickoff

Baselining, energy modeling, financial modeling, analysis of EEMs and District Systems

Phase 4 – Project Implementation

Installation
of EEMs
and District
System,
Green
Concierge,
M&V, Living
Communities work

Phase 5 – Track and Validate Economic Value Increases

Monitor
behavioral
changes and
measure and
validate
results

Living City Brooklyn

PHASE 1: C&I DISTRICT

PHASE 1 – Commercial/Industrial District

KONG CLEANERS

•6,550 sq. ft.

•Dry cleaning hub for stores throughout S.

Brooklyn

oyt St

•24 hour operations

•Baseload: 53kW

•Peak load: 70-85kW

•ERP: Upgrade steam press, optimize distribution system, upgrade lighting and add lighting controls

TRI-STATE SURGICAL SUPPLY

•16,500 sq. ft.

•Warehouse for surgical supplies, small office space

•Base load: 6kW

•Peak load: 8-15kW

•ERP: Upgrade lighting

HOTEL COMPLEX

•Approx. 90,000 sq. ft. planned

•Planned Boutique Hotel (100 rooms), Office space/artist work + gallery space, light manufacturing, commercial kitchen

•Baseload: 72kW

•Peak load: 88-128kW

•ERP: insulate envelope, upgrade windows, install

advanced HVAC plant,

utilize on-site cogeneration heat, and power, Install high efficiency lighting system

TGI INDUSTRIES

•30,931 sq. ft.

•Corporate headquarters, equipment showroom/ warehouse

•Warehouse – 16 hrs per day, Office approx. 12 hrs per day

•Baseload: 72kW

•Peak load: 87-129kW

•ERP: Install lighting controls, reduce HVAC system size, optimize distribution system

4TH AND BOND

•Individual artist and office space for approx. 24 tenants

•Expect partial occupancy for 24 hrs per day

•Baseload: 40kW

90 4th St 🗩

•Peak load: 38-123kW

•ERP: Upgrade lighting system, install lighting controls, upgrade HVAC system, insulate + seal building envelope

TOM OTTERNESS STUDIO

•17,977 sq. ft.

•Sculptors workshop, office, kitchen, loading dock

•12-16 hour daily operation

•Baseload: 35kW

•Peak load: 39-66kW

•ERP: replace skylights, repair and optimize distribution system, upgrade HVAC system and controls, upgrade lighting

ROBERT B. SAMUELS, INC.

•4,280 sq. ft.

Auto Service Shop

•Baseload: 4kW

•Peak load: 4-15kW

•ERP: Upgrade lighting system, install lighting

controls.

LIG IMPORTS

•9,200 sq. ft.

•Dry Storage

•Baseload: 13kW

•Peak load: 14-50kW

•ERP: Upgrade lighting system, install lighting

controls.

BROOKLYN FENCING CENTER

•16,500 sq. ft.

•Fencing school, warehouse space

•Mostly after school and weekend operation

•Baseload: 12kW

•Peak load: 9-29kW

•ERP: Install HVAC controls, upgrade lighting system, install lighting controls.

PHASE 1: C&I DISTRICT

Total Baseload: approx 300 kW

Peak Range: 350 – 634kW

POTENTIAL ENERGY PROGRAM:

- Energy Efficiency: Reduction and Optimization Plan
- Peak Shaving
- Demand Response
- Cogeneration Baseload Power and Thermal Consumption
- Solar PV Peak Load Production
- Power Storage
- Ancillary Grid Services

DISTRIBUTED GENERATION ARRANGEMENTS

Means to establishing Single Customer status Shared Infrastructure on a Physical Loop

DISTRIBUTED GENERATION ARRANGEMENTS

Means to establishing Single Customer status

SOLAR POTENTIAL

Option #1

Approx 300kW Potential

FUEL CELL ROUGH ANALYSIS

- 300 kW System (small!)
- \$12,000/kW Installed = \$3,600,000 Total
- Approx \$1,800,000 in Incentives/Grants
- Save Approx \$280,000 per year in heating and power expenses
- Simple Payback: 5.3 Years

Assumptions:

- Previous Incentives remain available (performance and installation)
- System operates 24/7 95% availability
- 56% total heat utilization

NET METERING ALLOWANCES

Electric Generating Equipment	Total Rated Capacity	Maximum Amount
Residential micro-CHP	1 to 10 kW	\$350
Residential fuel cells	up to 10 kW	\$350
Residential micro-hydro	up to 25 kW	\$350
Solar	up to 25 kW	\$350
Wind	up to 25 kW	\$750
Farm waste	up to 1,000 kW	\$5,000
Farm wind	above 25 kW up to 500 kW	\$5.000
Nonresidential solar or wind	above 25 kW up to 2,000 kW	Company's actual cost
Non-residential fuel cells	up to 1,500 kW	Company's actual cost
Non-residential micro-hydro	up to 2,000 kW	Company's actual cost

HURDLES

PROJECT DEVELOPMENT

- ORGANIZATION getting multiple building owners into an arrangement that can be legally defined
- LACK OF PRECEDENT lack of multi-stakeholder aggregation projects
- LOAD SIZE incorporating enough buildings to warrant the energy program

SOLUTIONS

(OR WHAT WOULD REALLY HELP)

- SPECIALIZATION we are conveners and caterers, ensuring that all the experts are at the table and the owners are well represented
- COMMUNITY BUILDING –
 associating owners with
 something bigger than their own
 building
- PRECEDENTS more multistakeholder examples
- ANCHOR BUILDINGS always have at least one heavy consistent user to bolster load.

HURDLES

DATA

- ELECTRIC DATA smaller buildings do not have detailed interval data collected. Lack of historical data
- HIDDEN TREASURE –
 underground infrastructure maps
 housed in various depts.,
 utilities, authorities, etc. must all
 be considered

SOLUTIONS

(OR WHAT WOULD REALLY HELP)

- GET TO KNOW YOUR LOAD –
 actively meter, interview
 operators, to inform modeling
- IN-DEPTH DATABASES –
 advanced metering collected for
 all building sizes, in one place,
 for owners and developers to
 access
- CONSOLIDATED DATABASES a one stop shop for sustainability data and maps

HURDLES

UTILITY/REGULATORY

- PROPERTY LINES few precedents of privately produced energy distributed across property lines
- OVER PRODUCTION limits to net-metering and low buy back rates.
- C&I RESI RESTRICTIONS limited to either or implementations.

SOLUTIONS

(OR WHAT WOULD REALLY HELP)

- MULTI-PROPERTY PRECEDENTS it's been done, now for more.
- OPEN EXPORT acknowledge actual per/kWh value to grid; reduce/remove net-metering limitations; improve buy-back rates
- STAGED DEVELOPMENT –
 identify best loops of C&I and
 Resi buildings for separate
 installations.
- INDISCRIMINATE DISTRIBUTION RULES – allow power producers and neighboring end-users take advantage of their mixed-use areas

LIVING CITY BLOCK AGGREGATION MODEL

39

FINANCE & GOVERNANCE MODELING

"The additional capital needed for today's hyper efficient buildings can be achieved by monetizing <u>future</u> energy savings."

FINANCE & GOVERNANCE MODELING

NEW & HYBRID FINANCE TOOLS

- Negawatt or Energy Efficiency PPA
- RESCO Resource and Energy Service Co.
- Project Finance model
- PRI Program Related Investments
- CDM Model
- Disparate Owners Come Together in Block Wide Consortiums

Living City Block

Urban Sustainable Community Governance Model

FINANCE & GOVERNANCE MODELING

FINANCE MODELING LCB PROJECTS

Equity	20%	Private (15-20% IRR), Social Equity (8-12% IRR)
Tax Credits	10%	Historic, LIHTC, NMTC, etc.
Rebates	10-15%	179D, Local Utility, Federal/State, etc.
Public	10-15%	CRA, Bonds, QECBs, ARRA, EECBG, CDFI
Sub/Mezz Debt	20%	Various Sources
Senior Debt	25-30%	Capitalized cash flow from EE savings
PROJECT FINANCING	100%	www.LivingCityBlock.org

The gleam of an heroic act
Such strange illumination
The Possible's slow fuse is lit
By the Imagination.

— Emily Dickinson

There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its success, than to take the lead in the introduction of a new order of things.

We turn the possible Nicolo Machiavelli Into the practical

The Prince

REPLICABLE SCALABLE EXPORTABLE

RESILIENT VIBRANT EFFICIENT

FRAMEWORK

INTEGRATION COLLABORATION

COMMUNITY

